

Welcome to PyTaskFarmer’s documentation!

PyTaskFarmer is a simple task farmer written in Python for parallelizing
multiple serial jobs at NERSC. It is flexible enough to run on other systems. It
is very loosely based on the concept of Shane Canon’s TaskFarmer [https://github.com/scanon/taskfarmer].

More complex task list definitions and setup environments are implemented
through the concepts of tasklist handers and runners.

	What It Does (10 minute version)

	Runners

	TaskList Handlers

	Examples

	Running at NERSC

	TODO

Features

	Per-task checkpointing.

	Mulitple farmers running on the same tasklist.

	Simple synchronization protocol using the file system.

	Abstract definition of tasklists via tasklist handlers.

	Automatic environment setup (ie: asetup or shifter).

	Analysis of task packing using Perfetto.

Quick Start

PyTaskFarmer can be installed using pip.

pip install pytaskfarmer

Create a list of tasks that you want to process in parallel. In this simple
example, a counter will be echoed.

for i in $(seq 0 10); do
 echo ${i} >> mywork.tasks
done

Run PyTaskFarmer. The progress will be stored inside the specified workdir.

pytaskfarmer.py --proc 8 --workdir myworkdir mywork.tasks

Usage

The executable script is:

usage: pytaskfarmer.py [-h] [--proc [Processes]] [--timeout TIMEOUT]
 [--workdir WORKDIR] [--verbose VERB]
 [--runner RUNNER] [--tasklist TASKLISTHANDLER]
 tasklist

The tasklist argument is a simple text file with one task per line. The
interpretation of the task is up to the TASKLISTHANDLER. By default, the task
is treated as a command to run. It is not important how complex the command is.

The --verbose flag adds a bit more output (though not much) telling You
what the script is doing as it runs.

The --timeout option allows you to set a timeout for the script, so that
after some number of seconds the tasks will be automatically killed (none by
default).

The --proc option tells the script how many parallel workers to create (
default 8).

The --workdir option tells the script where to store the progress (task
status, log files..) of a single run (default is tasklist_workdir).

The --runner options indicates which runner to execute the command with.
See the dedicated section on the available runners and how they work.

The --tasklist options indicates which tasklist handler to parse the
tasklist with. See the dedicated section on the available runners and how they

What It Does (60 second version)

The basic behavior, with the default runner/handler, is as follows. Each access
to a file is protected using a file locking mechanism.

	The tasklist is read and a toprocess file is created in the workdir with
unprocessed tasks.

	A number of workers (multiprocessing.Pool) are constructed to run on
the tasks.

	When some work is done, the command is placed into a finished or failed
files, depending on the status code.

	Duration and start times of completed tasks (timeline) are saved into a
timeline.json file. This can then be opened with Perfetto.

	The tasks are processed by the workers until 1) the work is completed; 2) the
timeout is reached; or 3) a signal is intercepted.

What It Does (10 minute version)

Details on what PyTaskFarmer does behind the scenes. This might help in case you
see unexpected behavior or want to know what the script is capable of.

PyTaskFarmer uses a series of files to track the progress of processing a
tasklist. The usage of a shared file system for communication between multiple
instances of PyTaskFarmer removes the need for an omniresent scheduler process.

All files are stored inside the working directory (workdir). The access to
them is protected using file locking mechanisms to prevent race conditions among
workers or multiple instances of PyTaskFarmer. Locks are written to
SCRATCH as other file systems at NERSC do not support file locking. In
case the system does not define SCRATCH, a lock file inside workdir is
used instead.

The PyTaskFamer program does the following:

	The tasklist is parsed by a tasklist handler to create the list of commands
to execute (tasks). If the toprocess file does not exist, then the tasks
are stored there. If the file already exists, the assumption is that you are
re-starting the task farmer and it should continue from where the last farmer
left off. This also allows for multiple farmers (on multiple nodes)
processing the same same task list. Such parallel farmers do not compete with
each other, but share the tasks.

	The requested number of workers (multiprocess.Pool) is intitiated.

	The workers are assigned a list of jobs that matches the total number of
input tasks to process in parallel. Each job fetches the next available task.
If no more tasks are available, then the job finishes quickly. This
guarantees that enough jobs are spawened to process all tasks, but does not
waste resources on completed tasks.

	Each task is passed to a runner that then executes it. The runner can perform
additional steps like setup the environment or execute the task inside a
container (ie: shifter).

	The output/error stream of each task is stored in a logfile at
logs/log_N, where N is the task ID. The task ID corresponds to
the order that the command is written in the original toprocess file
starting at 0. Note that the tasks might not finish in this order.

	The task’s exit code is used to put it into the finished or failed file
upon completion. Exit code 0 indicates success.

	If the farmer catches either a timeout or a SIGUSR1, then the
worker pool is immediately killed in a clean fasion. Any tasks that are being
executed are added back to the toprocess list.

Note

	The workers don’t know (or care) what command they run. That means if your
single-line commands use 4 threads at a time, then you can ask PyTaskFarmer to
run 64/4=16 processes and it will have 16 four-thread processes running at a
time.

	If your program can fully utilize a node (64 threads on Cori Haswell), then
you can ask the farmer to run one process at a time. This is equivalent to
running the commands in your text file in order, but with support for
checkpointing the per-file progress.

Runners

Runners define the execution environment in which the tasks are execute. They
can be also used globally across multiple tasklists. This reduces the amount of
clutter in each task definition and makes tasklists portable across multiple
environments.

The desired runner is selected using the --runner option to the
PyTaskFarmer program.

The BasicRunner is always available under the name default. See
Provided Runners for the list of runners shipped with PyTaskFarmer.

Defining Runners

Custom runners can be defined inside the ~/.pytaskfarmer/runners.d directory
or the current working directory as INI files. All files ending in .ini are
loaded. There can be multiple runners defined in a single file.

The format of a single runner definition is

[runnername]
Runner = runner.python.class
Arg0 = value0
Arg1 = value1

where runnername is the name of the runner and Runner is the Python class
(along with package and module) of the implementation. The remaining key:value
pairs are passed to the runner.python.class constructor as keyword
arguments.

Provided Runners

	
class taskfarmer.runners.BasicRunner

	Simple runner that runs a command.

Executes the command as it is given to it. It uses subprocess.Popen to
execute the task in the same environment as the worker.

	
__init__()

	

	
class taskfarmer.runners.ShifterRunner(image, setup='', volumes='', modules='', tempdir=False)

	Executes each task inside a Shifter container.
This can be preferable over starting PyTaskFarmer inside Shifter as it does
not require a recent version of Python in the image. Shifter itself is
started using subprocess module with the following command.

shifter --image image -- /bin/bash -c "setup && task"

The setup is user-configurable set of commands to setup the
environment (ie: source ALRB) in Shifter.

See the constructor for the list of available options.

Example (ATLAS Athena Release 22):

[reco22]
Runner = taskfarmer.runners.ShifterRunner
image = zlmarshall/atlas-grid-centos7:20191110
setup = source ${ATLAS_LOCAL_ROOT_BASE}/user/atlasLocalSetup.sh && source ${AtlasSetup}/scripts/asetup.sh Athena,22.2,latest
modules = cvmfs
tempdir = True

	
__init__(image, setup='', volumes='', modules='', tempdir=False)

	
	Parameters

	
	imagestr
	Name of Shfter image.

	setupstr, optional
	Setup command to run before executing task.

	volumesstr, optional
	List of volume bindings as a space separated string.

	modulestr, optional
	List of modules as a space separated string.

	tempdirbool, optional
	Each task should be run in own temporary directory.

TaskList Handlers

TaskList Handlers are responsible for parsing the contents of a tasklist into
a set of commands to execute (tasks). This reduces the amount of clutter in each
task definition and common tasks (ie: athena job options) reusable across
tasklists.

The desired tasklist handler is selected using the --tasklist option to
the PyTaskFarmer program.

The ListTaskList handler is always available under the name
default. See Provided TaskList Handlers for the list of tasklists
handlers shipped with PyTaskFarmer.

Defining TaskList Handlers

TaskList Handler definitions are loaded from pytaskfarmer/tasklists.d and the
current working directory. All files ending in .ini are loaded and are
expected to be the INI format.

The following scheme is expected:

[tasklisthandlername]
TaskList = tasklist.python.class
Arg0 = value0
Arg1 = value1

The extra arguments are passed to the TaskList constructor as keyword
arguments.

Provided TaskList Handlers

All TaskList Hander contructions take path and workdir as the
two positional arguments. They are automatically set by the PyTaskFarmer program
and should not be specified by the user.

Generic Handlers

	
class taskfarmer.task.ListTaskList(path, workdir)

	A list of tasks is defined using a file containing a task per line, with
supporting status files defined using a suffix. The task ID is defined as
the line number (starting at 0) inside the main task file.

Subclasses can implement the __getitem__ function to futher modify
the task definitions. The original line/task content is stored in the
tasks member variable. By default, the tasks[taskid] is returned
unmodified.

All supporting status files are stored inside the workdir. The used files
are:

	toprocess: List of tasks that still need to be processed. The format is
taskID task.

	finished: List of tasks that succesfully finished (return code 0). The
format is taskID task.

	failed: List of tasks that finished unsuccesfully (return code not 0).
The format is taskID task.

The list and corresponding operations are defined in a process-safe manner
using the supporting files to synchronize the state. This means that
multiple ListTaskLists can be created for a single tasklist (even on
multiple machines with a shared filesystem).

	
__init__(path, workdir)

	
	Parameters

	
	pathstr
	Path to tasklist.

	workdirstr
	Path to work directory.

ATLAS Handlers

	
class taskfarmer.atlas.TransformTaskList(path, workdir, transform, input, output, maxEventsPerJob=None, **kwargs)

	Run an ATLAS transform on input ROOT files.

See the __init__ function on details how to configure this tasklist
handler. A simple example for running no pileup digitization is below.

[digi]
TaskList = taskfarmer.atlas.TransformTaskList
transform = Reco_tf.py
input = HITS
output = RDO
autoConfiguration = everything
digiSteeringConf = StandardInTimeOnlyTruth
conditionsTag = default:OFLCOND-MC16-SDR-RUN2-06
geometryVersion = default:ATLAS-R2-2016-01-00-01
postInclude = default:PyJobTransforms/UseFrontier.py
preInclude = HITtoRDO:Campaigns/MC16NoPileUp.py
preExec = all:from ParticleBuilderOptions.AODFlags import AODFlags; AODFlags.ThinGeantTruth.set_Value_and_Lock(False);' 'HITtoRDO:from Digitization.DigitizationFlags import digitizationFlags; digitizationFlags.OldBeamSpotZSize = 42

The TransformTaskList supports splitting each input file into
multiple tasks, based on a maximum number of events. However, when
practical, it is recommeded to use AthenaMP for parallelizing event
processing. This has a reduced memory footprint. AthenaMP can enabled by
including the following in your tasklist handler defintion.

athenaopt = all:--nprocs=64

or by setting the ATHENA_PROC_NUMBER environmental variable.

The transform output is stored in the current working directory. It is then
copied to the workdir using rsync. This two stage process is required due
to how AthenaMP determines its temporary outputs. The implication is that
the runner needs to run the command using bash.

	
__init__(path, workdir, transform, input, output, maxEventsPerJob=None, **kwargs)

	The kwargs are interpreted as arguments to the transform command. For
example, having an kwarg of
kwargs['postInclude']="HITtoRDO:Campaigns/MC16NoPileUp.py"
translates into a transform argument of
--postInclude='HITtoRDO:Campaigns/MC16NoPileUp.py'. Note the
automatic wrapping of the value string inside singlue quotes. These are
automatically by the added by this tasklist handler.

	Parameters

	
	pathstr
	Path to tasklist

	workdirstr
	Path to work directory

	transformstr
	Name of transform (ie: Sim_tf.py)

	inputstr
	Type of input file (ie: EVNT)

	outputstr
	Type of output file (ie: HITS)

	maxEventsPerJobstr, optional
	Maximum number of events per task

	kwargs
	Arguments passed to athena as --key='value'.

	
class taskfarmer.atlas.AthenaTaskList(path, workdir, jobOptions, output, maxEventsPerJob=None, **kwargs)

	Run an athena job on input ROOT files.

See the __init__ function on details how to configure this tasklist
handler. A simple example for running no pileup digitization is below.

The job options need to use the built-in athena support for input files
(ie: --filesInput).

The AthenaTaskList supports splitting each input file into multiple
tasks, based on a maximum number of events. However, when practical, it is
recommeded to use AthenaMP for parallelizing event processing. This has a
reduced memory footprint. AthenaMP can enabled by including the following in
your tasklist handler defintion.

nprocs = 64

or by setting the ATHENA_PROC_NUMBER environmental variable.

The output file name is set as the output setting. The handler looks
for it in the current working directory and then copies it to the workdir
using rsync. This two stage process is required due to how AthenaMP
determines its temporary outputs. The implication is that the runner needs
to run the command using bash.

	
__init__(path, workdir, jobOptions, output, maxEventsPerJob=None, **kwargs)

	The kwargs are interpreted as arguments the the athena command. For
kwargs['postInclude']="HITtoRDO:Campaigns/MC16NoPileUp.py"
translates into an athena argument of
--postInclude='HITtoRDO:Campaigns/MC16NoPileUp.py'. Note the
automatic wrapping of the value string inside singlue quotes. These are
automatically added by this tasklist handler.

	Parameters

	
	pathstr
	Path to tasklist.

	workdirstr
	Path to work directory.

	jobOptionsstr
	Name of jobOptions file to execute.

	outputstr
	Expected name of output file.

	maxEventsPerJobstr, optional
	Maximum number of events per task.

	kwargs
	Arguments passed to athena as --key='value'.

Examples

Simple Example

Included in the package is a small test file that you can use as an example. Try
running

pytaskfarmer.py mywork.tasks

That will give you a sense of how the thing works. Feel free to kill it and
restart it if you wish.

SLURM Example (Array Jobs)

Example of a batch job for using PyTaskFarmer with SLURM is below. It
demonstrates how to correctly handle cleanup.

#!/bin/bash
#SBATCH --output=slurm-%j.out
#SBATCH --error=slurm-%j.err
#SBATCH --qos=debug
#SBATCH --tasks-per-node=1
#SBATCH --constraint=haswell
#SBATCH --signal=B:USR1@60
#SBATCH --array=1-5
#SBATCH --time=00:05:00

function handle_signal
{
 echo "$(date) bash is being killed, also kill ${PROCPID}"
 kill -s USR1 ${PROCPID}
 wait ${PROCPID}
}
trap handle_signal INT USR1

if [${#} != 1]; then
 echo "usage: ${0} tasklist"
 exit 1
fi
tasklist=${1}
logdir=${tasklist}_logs

hostname
uname -a
pwd
echo "tasklist = ${tasklist}"

${HOME}/mcgen/pytaskfarmer/pytaskfarmer.py --logDir ${logdir} --proc 32 ${tasklist} &
export PROCPID=${!}
wait ${PROCPID}
echo "$(date) Finish running!"

To run using array jobs:

sbatch slurm_test.sh mywork.tasks

SLURM Example (Multi-Node Jobs)

Example of a batch job for using PyTaskFarmer with a SLURM multi-node job is
below. It demonstrates how to correctly handle cleanup and launch PyTaskFarmer
on multiple nodes using srun.

#!/bin/bash
#SBATCH --output=slurm-%j.out
#SBATCH --error=slurm-%j.err
#SBATCH --qos=debug
#SBATCH --tasks-per-node=1
#SBATCH --constraint=haswell
#SBATCH --signal=B:USR1@60
#SBATCH -N5
#SBATCH --time=00:05:00

function handle_signal
{
 echo "$(date) bash is being killed, also kill ${PROCPID}"
 kill -s USR1 ${PROCPID}
 wait ${PROCPID}
}
trap handle_signal INT USR1

if [${#} != 1]; then
 echo "usage: ${0} tasklist"
 exit 1
fi
tasklist=${1}
logdir=${tasklist}_logs

hostname
uname -a
pwd
echo "tasklist = ${tasklist}"

srun -N${SLURM_JOB_NUM_NODES} \
 ${HOME}/mcgen/pytaskfarmer/pytaskfarmer.py --logDir ${logdir} --proc 32 ${tasklist} &
export PROCPID=${!}
wait ${PROCPID}
echo "$(date) Finish running!"

To run by requesting multiple nodes at the same time (srun):

sbatch srun_test.sh mywork.taskss

Running at NERSC

Tips and tricks for using the PyTaskFarmer on NERSC machines (ie: cori).

You can use PyTaskFarmer a part of your top-level batch script for submissions
into the NERSC slurm batch system. There are a variety of examples for running
multi-core or multi-node jobs available here [https://docs.nersc.gov/jobs/examples/].

Equalize Task Running Time

The farmer likes to have more work than workers, in order to keep those workers
busy at all times. That means if you have tasks that might be different lengths
(e.g. MC and data, or different size datasets, etc), it is very important to

	put the longer tasks earlier in the list,

	have a total run time that is longer than the longest job (preferably by a
factor of 2 or more) and

	request a number of cores that will be kept busy by your jobs.

For example, if you expect to have one 1-hour job and ten 5-minute jobs, you can
requests two threads; one thread will process the 1-hour job and the other
thread will process all the 5-minute jobs. This relies on your ordering the task
list well – if you make the 1-hour job last, then the two threads will work
through all your 5-minute jobs in about 25 minutes and then one will process the
1-hour job while the other sit idle (and wastes CPU). This requires some thought
and care, but can save us significant numbers of hours, so please do think
carefully about what you’re running!

Clean-up In Batch Jobs

The farmer can be used in any queue at NERSC. One of the better options if some
work needs doing but is not urgent is to use the flex queue on KNL. When
submitting into that queue, one must add
--time-min=01:30:00 --time=10:00:00, where the first is the minimum time
that the farmer should be run (cannot be not be longer than 2 hours) and should
be longer than a typical command you need to execute. The second is the total
wall time for the job, which must be less than 12 hours. Jobs in this queue will
be started, killed, and restarted from checkpoints.

Add to your job script

requeueing the job if reamining time >0 (do not change the following 3 lines)
. /usr/common/software/variable-time-job/setup.sh
requeue_job func_trap USR1

in order to have the job automatically re-queued so that it will continue to
run. You should also add to your run script

#SBATCH --signal=B:USR1@10

To give the job 10 seconds to handle the USR1 signal (it should not need that
long, but in case there are multiple workers fighing for the same lock). For the
check-pointing, please also add these to your job script:

use the following three variables to specify the time limit per job (max_timelimit),
the amount of time (in seconds) needed for checkpointing,
and the command to use to do the checkpointing if any (leave blank if none)
max_timelimit=12:00:00 # can match the #SBATCH --time option but don't have to
ckpt_overhead=60 # should match the time in the #SBATCH --signal option
ckpt_command=

Note that these are in addition to the usual sbatch specifications, and it is
quite important that they match.

Extra Memory

If you have serious memory issues, then it is possible to enable swap space when
running in a full node queue (e.g. regular; this is not possible in the shared
queue). To do so, make a burst-buffer config file like:

$ cat bb_swap.conf
#DW jobdw capacity=160GB access_mode=striped type=scratch
#DW swap 150GB

This uses the Cray DataWarp configuration format [https://pubs.cray.com/content/S-2558/CLE%206.0.UP05/xctm-series-datawarptm-user-guide/datawarp-job-script-command-examples]. The second line is the
important one here; it provides 150 GB of swap space within the burst buffer.
The first line describes the scratch space reservation that your job needs, and
may be unnecessary or even problematic depending on where you write your inputs
and outputs for the job (think about what it’s doing before sending the command
off to the queue). You can then add it to your job submission like:

salloc ... --bbf=bb_swap.conf

This allocates space on the burst buffer (generally pretty fast) to be used for
swap space memory for users. Note that swap is quite a bit slower than standard
(even main) memory, and so this option should be used with care. It is not, in
principle, clever enough to guarantee each job space in the main memory, so as
long as swap is being used on a node, all jobs on that node may be slowed down,
depending on the memory profile and usage of the offending job.

TODO

Lost of possible future work to futher improve PyTaskFarmer.

	At the moment, if the original process file is significantly modified (item
added and removed) or contains duplicates, in some cases the process IDs may
not be unique. Of course, the output can be re-directed by the user to a log
file with a more appropriate name, so the log files created by the farmer may
be dummy. If PROC_NUMBER is important to your workflow, then please either
submit additional farmers for new lists of processes or add a unique (short as
you like) comment to the end of the command to make the items distinguishable.

	It would be nice to add some monitoring hooks so that we can watch what users
are doing with this script.

	Longer-term, it would be interesting to try to keep all tasks that need to be
finished in an sqlite file, including a state (to process, running, finished,
failed). Adding an integer identifier would solve the above problem and give
us a free way to add jobs mid-way through a run.

	Storing all configuration inside workdir to reduce the overhead in
restarting PyTaskFarmer. Ideally to restart, one would just have to specify
the workdir. The tasklist handler and runner should be picked up from it.

Index

 _
 | A
 | B
 | L
 | S
 | T

_

 	
 	__init__() (taskfarmer.atlas.AthenaTaskList method)

 	(taskfarmer.atlas.TransformTaskList method)

 	(taskfarmer.runners.BasicRunner method)

 	(taskfarmer.runners.ShifterRunner method)

 	(taskfarmer.task.ListTaskList method)

A

 	
 	AthenaTaskList (class in taskfarmer.atlas)

B

 	
 	BasicRunner (class in taskfarmer.runners)

L

 	
 	ListTaskList (class in taskfarmer.task)

S

 	
 	ShifterRunner (class in taskfarmer.runners)

T

 	
 	TransformTaskList (class in taskfarmer.atlas)

 nav.xhtml

 Table of Contents

 		
 Welcome to PyTaskFarmer’s documentation!

 		
 What It Does (10 minute version)

 		
 Runners

 		
 Defining Runners

 		
 Provided Runners

 		
 TaskList Handlers

 		
 Defining TaskList Handlers

 		
 Provided TaskList Handlers

 		
 Generic Handlers

 		
 ATLAS Handlers

 		
 Examples

 		
 Simple Example

 		
 SLURM Example (Array Jobs)

 		
 SLURM Example (Multi-Node Jobs)

 		
 Running at NERSC

 		
 Equalize Task Running Time

 		
 Clean-up In Batch Jobs

 		
 Extra Memory

 		
 TODO

_static/plus.png

_static/file.png

_static/minus.png

